Technical guide Protection medium voltage-2016

Medium Voltage technical guide 2018

Technical Application Papers No. 15 The MV/LV transformer substations (passive users)

Prefabricated metal-enclosed and metal-clad switchgear Frequency and switchgear functions

Frequency

Two frequencies are usually used throughout the world:

A short list could be summarized as follows, knowing some countries use both frequencies in different networks:

- 50 Hz in Europe Africa Asia Oceania South of South America except countries mentioned for 60Hz.
- 60 Hz in North America North of South America Kingdom of Saudi Arabia
 Philippines Taiwan South Korea South of Japan.

Switchgear functions

The following table describes the different switching and protecting functions met in MV networks and their associated schema.

Designation	Function	Current switching	
and symbol		Operating current	Fault current
Disconnector	Isolates		
Earthing switch	Connects to the earth		(short-circuit making capacity)
Load break switch	Switches loads	•	
Disconnecting switch	Switches Isolates	•	
Circuit-breaker	Switches Protects	•	•
Contactor	Switches loads	•	
Withdrawable contactor	Switches Isolates if withdrawn	•	
Fuse	Protects Does not isolate		● (once)
Withdrawable devices	See associated function	See associated function	See associated function

Selection of switching devices

There are three main types of electric circuit and closing devices in medium voltage networks.

ABB

Switch-disconnector

Selection of switching devices

Contactor

סיכום מפסיקי זרם

youtube מסרט ב

Protection and Switchgear 13/200

Electrical Circuit Breaker

Definition of Circuit Breaker

Electrical Circuit Breaker is a switching device which can be operated manually as well as automatically for controlling and protection of electrical power system respectively. As the modern power system deals with huge currents, the special attention should be given during designing of circuit breaker to safe interruption of arc produced during the operation of circuit breaker. This was the basic definition of circuit breaker.

- Types of Circuit Breaker
 - 1) Oil Circuit Breaker
 - 2) Air Circuit Breaker
 - 3) SF6 Circuit Breaker
 - 4) Vacuum Circuit Breaker

< 0

/coretronix

윤 : :

Types of oil circuit breakers

Minimum Oil Circuit Breaker

Vacuum Circuit Breaker

SF6 Circuit Breaker

► **●** 1:26 / 1:50

< 0

≮ \$r & No	Switchgear Equipment	Function Protection and Switchgear 13/200
1.	Fuse	To Protect circuit against over current and short circuit currents.
2.	Circuit breaker	To make or break the circuit manually or remotely under normal condition and automatically under fault condition.
3.	Isolator	To disconnect the part of the system for maintenance from live circuit under no current condition.
4.	Earthing Switch	To discharge the voltage on the line (due to charges of line capacitance to earth) after disconnecting line from live section.
5.	Light using arrester	To divert high voltage surge towards the earth, due to lighting stroke or switching surges.
6.	Current transformer	To stepping down the magnitude of current for measurement, protection and control.
7.	Potential transformer	To stepping down the magnitude of line voltage for measurement, protection and control.
8.	Relay	To disconnect the abnormally operating part so as to prevent the subsequent faults e.g. Overload protection of a machine protects the machine and prevent insulation failure.
	1:36 / 1:50	

Online Electrical Engineering

SHOW MENU

Types and Operation of SF6 Circuit Breaker

Under Electrical Switchgear

This page is all about:

SF6 Circuit Breaker

Disadvantages of SF6 CB

Types of SF6 Circuit Breaker

Working of SF Circuit Breaker

https://www.electrical4u.com/types-and-operation-of-sf6-circuit-breaker/

Table2. Comparison of the SF6 And Vacuum Technologies In Relation To Operational Aspects

8/31/2015	Comparison Between Vacuum and SI	Comparison Between Vacuum and SF6 Circuit Breaker EEP		
Criteria	SF6 Breaker	Vacuum Circuit Breaker		
Summated currer cumulative	nt 10-50 times rated short circuit current	30-100 times rated short circuit current		
Breaking current capacity of interrupter	5000-10000 times	10000-20000 times		
Mechanical operating life	5000-20000 C-O operations	10000-30000 C-O operations		
No operation before maintenance	5000-20000 C-O operations	10000-30000 C-O operations		
Time interval between servicing Mechanism	5-10 years	5-10 years		
Outlay for maintenance	Labour cost High, Material cost Low	Labour cost Low, Material cost High		
Reliability	High	High		
Dielectric withstand strength of the contact gap	High	Very high		

. .

.

. .

-

. .

-

.

.

.

.....

Table3. Comparison of the SF6 And Vacuum Switching Technologies In Relation To Switching Applications

8/31/2015	Comparison Between Vacuum and SF6 Circuit Breaker EEP		
Criteria	SF6 Circuit Breaker	Vacuum Circuit Breaker	
Switching of Short circuit current with High DC component	Well suited	Well suited	
Switching of Short circuit current with High RRV	Well suited under certain conditions (RRV>1-2 kV per Milli seconds	Very well suited	
Switching of transformers	Well suited.	Well suited	
Switching of reactors	Well suited	Well suited. Steps to be taken when current <600A. to avoid over voltage due to current chopping	
Switching of capacitors	Well suited. Re-strike free	Well suited. Re-strike free	
Switching of capacitors back to back	Suited. In some cases current limiting reactors required to limit inrush current	Suited. In some cases current limiting reactors required to limit inrush current	
Switching of arc furnace	Suitable for limited operation	Well suited. Steps to be taken to limit over voltage.	

-

Non-inductive current and voltage sensors

Since the power aborbed by the devices connected to the secondary circuit is extremely limited,

it is no longer necessary to have magnetic circuits for the coupling between the primary and secondary circuit.

Current sensors or air CTs (Rogowsky coils) and voltage sensors (voltage dividers)

have therefore been developed, which eliminate the negative as- pects of the inductive type of transformers (hysteresis cycle).

- 1 Opening and closing push-buttons
- 2. Connection for the line operating lever
- 3. Connection for the earth operating lever
- 4. Voltage signalling lamps (if applicable)

- 5. Top insulators
- 6. Enclosure (power part)
- 7. Housing of the operating mechanism
- 8. Bottom insulators
- 9. Mimic diagram

- 1. Operating mechanism of the the interrupting part
- 2. Resin housing of the interrupting part
- 3. Mechanical interlock between feeder disconnector and earthing switch
- 4. Lower part in stainless steel
- 5. Operating mechanism of the line disconnector and the earthing switch
- 6. Lower isolators with integrated capacitive sockets

Vacuum circuit-breakers VD4/R-Sec (with REF601 relay and current sensors)

Gas circuit-breakers HD4/R-Sec (with REF601 relay and current sensors)

ABB circuit-breakers of the VD4/R and HD4/R

series with lateral operating mechanisms have been designed specifically for use in secondary distribution switchgear and are used in MV/LV transformer substations in the industrial sector in general and in the service sector.

The use of **vacuum circuit- breakers** provides particular advantages in power systems where required frequent operations are required with normal operating currents.

VD4/R vacuum circuit-breakers provide high operating reliability and a long life.

The HD4/R medium voltage **gas circuit-breaker** uses SF6 gas to extinguish the electric arc and as the insulating medium. This circuit-breaker too, like the previous one, is built using the separate pole technique. Its construction is compact, sturdy and lightweight and is a lifetime sealed pressure system (IEC 62271-1).

Comparison of the SF6 And Vacuum Switching Technologies In Relation To Switching Applications

Criteria	SF6 Circuit Breaker	Vacuum Circuit Breaker
Switching of Short circuit current with High DC component	Well suited	Well suited
Switching of Short circuit current with High RRV	Well suited under certain conditions (RRV>1-2 kV per Milli seconds	Very well suited
Switching of transformers	Well suited.	Well suited
Switching of reactors	Well suited	Well suited. Steps to be taken when current <600A. to avoid over voltage due to current chopping
Switching of capacitors	Well suited. Re-strike free	Well suited. Re-strike free
Switching of capacitors back to back	Suited. In some cases current limiting reactors required to limit inrush current	Suited. In some cases current limiting reactors required to limit inrush current
Switching of arc furnace	Suitable for limited operation	Well suited. Steps to be taken to limit over voltage.

Switchgear definition

Current-limiting fuses Introduction Characteristics

Introduction

MV current-limiting fuses are primarily used to protect transformers, and also motors, capacitors and other loads.

Characteristics

Ratings of the fuse-base

- Rated voltage
- Rated current
- Rated insulation level (power-frequency, dry, wet and impulse withstand voltages)

Ratings of the fuse-link

- Rated voltage
- Rated current
- Rated maximum breaking current
- Rated frequency
- Rated minimum breaking current for Back-Up fuses.
- Rated TRV

Characteristics of the fuse-link

- Temperature rise
- Class
- Switching voltages
- Time-current characteristics
- Cut-off characteristics
- I²t characteristics
- · Mechanical characteristics of the strikers
- Maximum application temperature

Voltage across the fuse

High current interruption for current limiting fuse

6. Diagram of user system for connection and MV switchgear

